Earth Science Curriculum Map

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
S.1 – SWBAT formulate questions about themselves and their surroundings S.2 – SWBAT collect data using observation and	SWBAT define observation and inference, and can differentiate between the two. SWBAT measure and define mass, weight, area, volume,	Science and Engineering Practices: Developing and Using Models Engaging in Argument From Evidence	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations.	Month of September UNIT - Observations, Inferences, and Measurement
surveys, and record appropriately S.3 – SWBAT construct a table to represent a collection of data	temperature, and time using metric units. SWBAT convert between base metric units and those with prefixes centi-, kilo-, and	Scientific Knowledge Is Based Upon Empirical Evidence Crosscutting Concepts:	Earth Science Reference Tables Mill's Notes Packet Lab Manual developed by	Quizzes - Castle Learning and problem-attic.com Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts	
S.4 – SWBAT identify the parts of a graph S.5 – SWBAT display data in a	milli SWBAT identify direct, inverse, and cyclic relationships from	Energy and Matter Structure and Function Stability and	Michael Breed www.problem-attic.co m www.newsela.com	and worksheets, readings from selected works, and review book Test Review Packets created with	

			T	
graph	both	Change		Castle Learning and/or
	data and graphs.		www.castlelearning.c	Problem-Attic website
S.7 – SWBAT read		Interdependence of	<u>om</u>	
and interpret	SWBAT read and	Science,		Labs -
data in graphs	interpret the	Engineering, and	www.ck12.org	Graphing Skills
	appropriate Earth	Technology		
S.8 – SWBAT	Science		www.edpuzzle.com	Observations
formulate	Reference Tables	<u>ELA</u> :		& Inferences
conclusions and	when necessary.	11-12.RST.1	Various videos from	
make predictions		11-12.RST.2	iTunes, Netflix, PBS,	Scientific Method
from graphs	Additional	9-12.WHST.1	etc.	
	Vocabulary:	9-12.WHST.5		Density
SWBAT determine	Scientific notation	11-12.SL.5	www.newyorksciencet	
what will be	Quantitative		eacher.com	Metric Measurement
measured and how	Qualitative	Math:		
in a laboratory	Magnitude	MP.2	SUNY Oneonta Earth	Lab Safety
setting, using	Scale	MP.4	Science Listserv	
appropriate	Volume	AI-N.Q.1		Percentage Error
methods	Area	AI-N.Q.3	Document Camera	
and formulas.	Mass		and projector	Sunspot Analysis
	Weight			
SWBAT organize	Independent		Promethean Board	Cumulative Summative
and neatly label	Variable			Assessment – NYS Earth
their work.	Dependent		Digital balance	Science Regents
	Variable			Examination in June
SWBAT analyze			Ruler	
problems by				
observing patterns.			Graduated Cylinder	
SWBAT perform			Timer/Stopwatch	
calculations				
involving mass,				
length, area,				

volume, time, temperature, and Density.			
MP.2 – SWBAT reason abstractly and quantitatively.			
MP.4 – SWBAT model Mathematically.			
HSN-Q.A.1 – SWBAT use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
HAS-CED.A.4 – SWBAT rearrange formulas to highlight a quantity of interest, using			

HSN-Q.A.1 – SWBAT define SwBAT use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and data displays. HSN-Q.A.2 – Define appropriate quantities for the SwBAT define model and explain how models are used to describe Earth's appearance. Science and Engineering Practices: Secondary Earth Science, as customized by Michael Breed to suit our curriculum Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks Carth Science ReferenceTables Unit's Notes Packet First Three Weeks of October UNIT - Earth's Shap & Mapping Earth's Surfa Weaks of October UNIT - Earth's Shap & Mapping Earth's Surfa Weeks of October UNIT - Earth's Shap & Mapping Earth's Surfa Weeks of October UNIT - Earth's Surfa Wapping Earth's Surfa Waeks of October UNIT - Earth's Surfa Wapping Earth's Surfa Wapping Earth's Surfa Waeks of October UNIT - Earth's Surfa Waeks of October UNIT - Earth's Surfa Wapping Earth's Surfa Wapping Earth's Surfa Wapping Earth's Surfa Wall's Notes Packet Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, Newsela.com, teacher-created handouts	the same reasoning as in solving equations.					
SWBAT use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. HSN-Q.A.2 – Define appropriate quantities for the model and explain how models are used to describe be used to describe Earth's are used to describe be used to describe used to describe be used to describe used to describe used to describe to describe the scale and the origin in graphs and data displays. Impaging in Argument From Evidence Chromebooks Scientific Science Regents examinations. School-issued Chromebooks Chromebooks Earth Science Reference Tables Weeks of October UNIT - Earth's Shap & Mapping Earth's Surfa Earth Science Reference Tables Wieks of October UNIT - Earth's Surfa Weeks of October UNIT - Earth's Surfa Weeks of October UNIT - Earth's Surfa Wieks of October Witten using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations. Wighting in the provious administrations of NYS Earth Science Regents examinations. Wighting in the provious administrations of NYS Earth's Shap & Mapping Earth's Surfa Will's Notes Packet Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts	Standards	Content	Skills/Practices		· · ·	(Months/Weeks/
descriptive modeling. Method. Structure and Function HSN-Q.A.3 – Earth's latitude Method. Structure and Function www.problem-attic.co m www.problem-attic.co m www.problem-attic.co m review book Test Review Packets	SWBAT use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. HSN-Q.A.2 — Define appropriate quantities for the purpose of descriptive modeling.	model and explain how models are used to describe Earth's appearance. SWBAT describe Earth as an oblate spheroid and explain, using observations, why it is that shape. SWBAT calculate the circumference of a circle/Earth by using Eratosthenes Method. SWBAT describe	Engineering Practices: Developing and Using Models Engaging in Argument From Evidence Scientific Knowledge Is Based Upon Empirical Evidence Crosscutting Concepts: Energy and Matter Structure and	Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks Earth Science ReferenceTables Mill's Notes Packet Lab Manual developed by Michael Breed www.problem-attic.co m	the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations. Quizzes - Castle Learning and problem-attic.com Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts and worksheets, readings from selected works, and review book	Weeks of October UNIT - Earth's Shape

	1				
Choose a level of	and longitude	Stability and		created with	
accuracy	coordinate	Change	www.castlelearning.c	Castle Learning and/or	
appropriate for the	system		<u>om</u>	Problem-Attic website	
purpose of	and determine	Interdependence of			
descriptive	locate coordinates	Science,	www.ck12.org	Labs -	
modeling.	from maps such as	Engineering, and		Latitude & Longitude	
	those on pages	Technology	www.edpuzzle.com		
MP.2 – SWBAT	3, 4, and 5 of the			Earth's Shape	
reason abstractly	Earth Science	<u>ELA</u> :	Various videos from		
and quantitatively.	Reference Tables.	11-12.RST.1	iTunes, Netflix, PBS,	USGS Topographic Maps/	
		11-12.RST.2	etc.	Chenango Forks	
MP.4 – SWBAT	SWBAT state the	9-12.WHST.1		Quadrangle	
model	time in an area,	9-12.WHST.5	www.newyorksciencet		
mathematically.	given a map of	11-12.SL.5	eacher.com	Drawing Map Profiles	
	continental US				
S.1 – SWBAT	time zones.	<u>Math</u> :	SUNY Oneonta Earth	Field Mapping	
formulate		MP.2	Science Listserv		
questions	SWBAT use	MP.4		Eratosthenes	
about themselves	Earth's angular	AI-N.Q.1	Document Camera	Circumference	
and their	rate of	AI-N.Q.3	and projector		
surroundings.	rotation (15°/hour)			Cumulative Summative	
	to determine an		Promethean Board	Assessment – NYS Earth	
S.2 – SWBAT	observer's			Science Regents	
collect data using	longitude.		Magnifying glasses	Examination in June	
observation and					
surveys, and	SWBAT find a		Various topographic		
record	location on a map		maps,including the		
appropriately	based upon its		1:24,000 scale		
	latitude, given the		USGS Chenango		
SWBAT determine	altitude of Polaris.		Forks Quadrangle		
what will be	0,475.47				
measured and how	SWBAT				
in a laboratory	determine the				

setting, using appropriate methods and formulas. SWBAT organize and neatly label their work. SWBAT analyze problems by observing patterns.	direction of flow of a river/stream on a topographic map. SWBAT calculate the gradient between two points on a topographic map. SWBAT correctly draw isolines/contour lines on a field Map. SWBAT identify areas of steep and gentle gradients on topographic maps based upon the spacing of contour lines. SWBAT correctly draw a topographic map		
	draw a topographic map profile between two points on a field map.		

	SWBAT determine the contour interval on a field map. SWBAT identify directions on a map based upon the four cardinal Directions. SWBAT determine the distance between two points on a map using a map scale. Additional Vocabulary: Index Contour Compass Rosette				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (AII) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
HSN-Q.A.3 — Choose a level of accuracy appropriate for the purpose	HS-ESS2-3 – SWBAT explain that rocks and minerals can be identified and	Science and Engineering Practices:	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist	Late October through mid-November

of descriptive modeling.	classified using various tests	Developing and Using Models	Michael Breed to suit our curriculum	solely of questions taken from previous	Properties of Rocks and
modeling.	and protocols that	Osing Wodels	our curricularii	administrations of NYS	Minerals
MP.2 – SWBAT	determine their	Engaging in	School-issued	Earth Science	Milliorais
reason abstractly	physical and	Argument From	Chromebooks	Regents examinations.	
and quantitatively	chemical	Evidence	Omomebooks	regents examinations.	
and quantitatively	properties.	LVIGETICE	Earth Science	Quizzes - Castle Learning	
S.1 – SWBAT	properties.	Scientific	ReferenceTables	and problem-attic.com	
formulate	HS-ESS2-5 –	Knowledge Is Based	i Neierence rabies	and problem-attic.com	
questions about	SWBAT perform	Upon Empirical	Mill's Notes Packet	Homework assignments	
themselves and	mechanical and	Evidence	Will S NOTES FACKET	from textbook, CK12.org,	
their surroundings	chemical	LVIUEIICE	Lab Manual	Castle Learning, Edpuzzle,	
their surroundings		Crossoutting		Newsela.com,	
S.2 – SWBAT	investigations with water and a	Consented	developed by Michael Breed	teacher-created handouts	
		Concepts:	I wiichaei Breed		
collect data using	variety of solid	Chargy and Matter	ununu problem ettie ee	and worksheets, readings	
observation and	materials to	Energy and Matter	www.problem-attic.co	from selected works, and	
surveys, and	provide	04	<u>m</u>	review book	
record	the evidence for	Structure and	1.	T. (B.) B. (4)	
appropriately	connections	Function	www.newsela.com	Test Review Packets	
014/01/01	between the			created with	
SWBAT determine	hydrologic cycle	Stability and	www.castlelearning.c	Castle Learning and/or	
what will be	and system	Change	<u>om</u>	Problem-Attic website	
measured and how	interactions				
in a laboratory	commonly	Interdependence of	www.ck12.org	Labs -	
setting, using	known as the rock	Science,		Mineral Identification	
appropriate	cycle.	Engineering, and	www.edpuzzle.com		
methods and		Technology		Sedimentary Rock	
formulas.	ESS2.B – SWBAT		Various videos from	Identification	
	explain that	<u>ELA</u> :	iTunes, Netflix, PBS,		
SWBAT organize	minerals are the	11-12.RST.1	etc.	Igneous Rock Identification	
and neatly label	building blocks of	11-12.RST.2			
their work.	igneous,	9-12.WHST.1	www.newyorksciencet	Metamorphic Rock	
	metamorphic, and	9-12.WHST.5	eacher.com	Identification	

SWBAT analyze	sedimentary rocks	11-12.SL.5			
problems by	and can be		SUNY Oneonta Earth	Cumulative Summative	
observing patterns.	identified using	<u>Math</u> :	Science Listserv	Assessment – NYS Earth	
	physical and	MP.2		Science Regents	
WHST.9.12.1 –	chemical	MP.4	Document Camera	Examination in June	
SWBAT write	characteristics.	AI-N.Q.1	and projector		
arguments focused	These rock	AI-N.Q.3			
on rocks and	types are evidence		Promethean Board		
minerals.	of stages of				
	constant recycling		Mineral Kits		
WHST.9.12.2 –	of Earth material				
SWBAT write	by surface		Mineral Test kits,		
informative/explan	processes and		which include		
atory texts,	convection		magnifying glasses,		
including the	currents in the		glass plates, streak		
narration of	mantle.		plates, iron nails,		
historical			copper pennies,		
events, scientific	(HS- ESS2-3)		steel files, and dilute		
procedures/experi	HS-ESS3-1 –		hydrochloric acid in		
ments, or technical	SWBAT construct		dropper bottles.		
processes.	an explanation				
	based on evidence		Sedimentary Rock		
SL.11-12.5 –	for		Kits		
SWBAT make	how the availability				
strategic use of	of natural		Igneous Rock Kits		
digital media (e.g.,	resources,				
textual, graphical,	occurrence of		Metamorphic Rock		
audio, visual, and	natural		Kits		
interactive	hazards, and				
elements) in	changes in climate				
presentations to	have influenced				
enhance	human activity.				
understanding of	Examples of key				

findings, reasoning, and evidence and to add interest.	natural resources could include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. HS-ESS3-2 — SWBAT evaluate competing design		
	solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on		

	where it is not. Examples could include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen. SWBAT use and understand the diagrams and tables on pages 6,7, and 16 of the Earth Science Reference Tables.				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
HSN-Q.A.3 – Choose a level of accuracy	HS-ESS1-5 - SWBAT evaluate evidence of the	Science and Engineering Practices:	CK12 Organization Digital Textbook - Secondary Earth	Tests - all tests throughout the year are written using Castle	All of December UNIT -

te Tectonics, rthquakes, d Volcanoes
•
d Volcanoes

	1			I	
their work.	plate interactions.	9-12.WHST.5	www.newyorksciencet		
		11-12.SL.5	<u>eacher.com</u>	Indonesian Tsunami	
SWBAT analyze	HS-ESS2-1 –				
problems by	SWBAT develop a	Math:	SUNY Oneonta Earth	New York State	
observing patterns.	model to illustrate	MP.2	Science Listserv	Landscape Regions	
	how Earth's	MP.4			
WHST.9.12.1 –	internal and	AI-N.Q.1	Document Camera	The Rock Cycle	
SWBAT write	surface processes	AI-N.Q.3	and projector		
arguments focused	operate at different				
on plate	spatial and		Promethean Board	Cumulative Summative	
tectonics and	temporal scales to			Assessment – NYS Earth	
associated	form continental		Safety compass	Science Regents	
processes.	and ocean-floor			Examination in June	
	features.		Ruler		
WHST.9.12.2 -	Emphasis				
SWBAT write	is on how the		Meter Sticks		
informative/explan	appearance of				
atory texts,	land features (such		Classroom AS-1		
including the	as mountains,		Seismometer		
narration of	valleys, and				
historical	plateaus) and		Seismograms		
events, scientific	sea-floor				
procedures/experi	features (such as				
ments, or technical	trenches, ridges,				
Processes.	and seamounts)				
	are a result of both				
SL.11-12.5 –	constructive				
SWBAT make	processes (such				
strategic use of	as volcanism,				
digital media (e.g.,	tectonic uplift, and				
textual, graphical,	deposition) and				
audio, visual, and	destructive				
interactive	processes (such				
	<u> </u>				

		 Т	
elements) in	as weathering,		
presentations to	subduction, and		
enhance	coastal erosion).		
understanding of			
findings,	HS-ESS2.A –		
reasoning, and	Earth Materials &		
evidence and to	Systems		
add interest.			
	SWBAT explain		
SBWAT identify,	that Earth's		
state the various	systems, being		
characteristics of,	dynamic and		
and locate various	interacting, cause		
types of tectonic	feedback effects		
plate boundaries	that can increase		
using page 5 from	or decrease the		
the Earth Science	original changes.		
Reference Tables.			
	HS-ESS2.B –		
SWBAT draw	Plate Tectonics &		
and/or recognize	Large-Scale		
the patterns of	System		
convection	Interactions		
currents in the			
asthenosphere at	SWBAT explain		
divergent and	that plate tectonics		
convergent	is the unifying		
tectonic plate	theory that		
boundaries.	explains		
SWBAT identify	the past and		
and explain the	current		
existence of the	movements of		
landforms	the rocks at		

	, ,		
(volcanoes, island	Earth's surface		
arcs, oceanic	and provides a		
trenches, etc.)	framework for		
associated with	understanding its		
convergent,	geologic history.		
divergent, and	Plate movements		
transform tectonic	are responsible		
plate boundaries.	for most		
SWBAT state the	continental and		
properties of	ocean-floor		
primary and	features and for		
secondary seismic	the distribution of		
Waves.	most rocks and		
	minerals within		
SWBAT calculate	Earth's crust.		
the difference in			
arrival times of	HS-ESS2.A –		
primary and	Earth Materials		
secondary seismic	and Systems		
waves.	SWBAT recognize		
	that Earth's		
SWBAT determine	systems, being		
the distance to	dynamic and		
the epicenter of an	interacting, cause		
earthquake, using	feedback effects		
"Earthquake	that can increase		
P-Wave & S-Wave	or decrease the		
Travel Time" chart	original changes.		
on page 11 of	Evidence from .		
the Earth Science	deep probes and		
Reference Tables	seismic waves,		
and a provided	reconstructions of		
seismogram.	historical		

	т т		T	
	changes in Earth's			
SWBAT correctly	surface and its			
draw epicenter	magnetic field, and			
distances from	an			
seismometers/citie	understanding of			
s on a map to	physical and			
triangulate the	chemical			
location	processes lead to			
of an earthquake	a model of Earth			
epicenter.	with a hot but solid			
	inner core, a liquid			
SWBAT calculate	outer core, a solid			
earthquake origin	mantle and crust.			
times and primary	Motions of the			
and secondary	mantle and its			
seismic waves	plates occur			
travel times using	primarily through			
the Earth Science	thermal			
Reference Tables.	convection, which			
SWBAT recognize	involves the			
that the worldwide	cycling of matter			
patterns of	due to the			
earthquakes and	outward flow of			
volcanoes	energy from			
correspond to	Earth's interior and			
tectonic plate	gravitational			
boundaries.	movement of			
	denser materials			
	toward the interior.			
	HS-ESS2.B –			
	Plate Tectonics &			
	Large-Scale			
	System			

Г		1	
Interaction	ıs		
SWBAT			
understan	d that		
residual he	eat from		
Earth's for			
and the ra			
decay of u			
isotopes ir			
interior			
continually	,		
generate			
that is abs			
Earth's ma			
crust, drivi	l l		
mantle co			
Plate tector			
be viewed			
surface ex	l l		
of mantle			
convection	ո.		
PS4-A - W	/ave		
Properties	l l		
SWBAT			
understan	d how		
geologists			
seismic wa			
their reflec	l l		
interfaces			
layers to p	l l		
structures			
		1	

	the planet.				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
HSN-Q.A.3 – SWBAT choose a level of accuracy appropriate for the purpose of descriptive modeling. MP.2 – SWBAT reason abstractly and quantitatively. S.1 – SWBAT formulate questions about themselves and their Surroundings. S.2 – SWBAT collect data using observation and surveys, and record appropriately. SWBAT determine what will be	HS-ESS2-1 — SWBAT develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive processes (such as volcanism, tectonic uplift, and	Science and Engineering Practices: Developing and Using Models Engaging in Argument From Evidence Scientific Knowledge Is Based Upon Empirical Evidence Crosscutting Concepts: Energy and Matter Structure and Function Stability and Change Interdependence of	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks Earth Science ReferenceTables Mill's Notes Packet Lab Manual developed by Michael Breed www.problem-attic.co m www.newsela.com www.castlelearning.com	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations. Quizzes - Castle Learning and problem-attic.com Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts and worksheets, readings from selected works, and review book Test Review Packets created with Castle Learning and/or Problem-Attic website	January through early February UNIT - Weathering and Erosion (Surface Processes)

	1			T	
measured and how	deposition) and	Science,	www.ck12.org	Labs -	
in a laboratory	destructive	Engineering, and		Weathering of a Sugar	
setting, using	processes (such	Technology	www.edpuzzle.com	Cube/Alka- Seltzer	
appropriate	as weathering,				
methods and	subduction, and	<u>ELA</u> :	Various videos from	Rates of Weathering	
formulas.	coastal erosion).	11-12.RST.1	iTunes, Netflix, PBS,		
	,	11-12.RST.2	etc.	Stream Discharge	
SWBAT organize	HS-ESS2-2 -	9-12.WHST.1			
and neatly label	SWBAT analyze	9-12.WHST.5	www.newyorksciencet	Drainage Patterns of NYS	
their work.	geoscience data to	11-12.SL.5	eacher.com		
	make the claim			Direction of Worldwide	
SWBAT analyze	that one change to	Math:	SUNY Oneonta Earth	Rivers Flow	
problems by	Earth's surface	MP.2	Science Listserv		
observing patterns.	can create	MP.4		Cumulative Summative	
	feedbacks that	AI-N.Q.1	Document Camera	Assessment – NYS Earth	
WHST.9.12.1 -	cause changes to	AI-N.Q.3	and projector	Science Regents	
SWBAT write	Earth's systems.			Examination in June	
arguments focused	Examples of data		Promethean Board		
on weathering,	could also include				
erosion, and	descriptions of		All necessary lab		
deposition and all	other system		equipment to		
associated	interactions, such		complete labs for this		
processes.	as how the loss of		unit.		
·	ground vegetation				
WHST.9.12.2 -	causes an				
SWBAT write	increase in water				
informative/explan	runoff and soil				
atory texts,	erosion; how				
including the	dammed rivers				
narration of	increase				
historical events,	groundwater				
scientific	recharge,				
procedures/experi	decrease sediment				
-					

T			
ments, or technical	transport, and		
Processes.	increase coastal		
	erosion; or how the		
SL.11-12.5 –	loss of wetlands		
SWBAT make	causes a decrease		
strategic use of	in local humidity		
digital media (e.g.,	that further		
textual, graphical,	reduces the		
audio, visual, and	wetland extent.		
interactive			
elements) in	HS-ESS2-5 –		
presentations to	SWBAT plan and		
enhance	conduct an		
understanding of	investigation of the		
findings,	properties of water		
reasoning, and	and its effects		
evidence and to	on Earth materials		
add interest.	and surface		
	processes.		
	Emphasis is on		
	mechanical and		
	chemical		
	investigations with		
	water and a		
	variety of solid		
	materials to		
	provide the		
	evidence for		
	connections		
	between the		
	hydrologic cycle		
	and system		
	interactions		

commonly known as the rock cycle. Examples of mechanical investigations could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by vaganisine bow			
cycle. Examples of mechanical investigations could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
of mechanical investigations could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as if freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation	I I		
investigations could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
(erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation	1 -		
porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation	1		
as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation	1		
chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation			
weathering and recrystallization (by testing the solubility of different materials) or melt generation	1		
recrystallization (by testing the solubility of different materials) or melt generation			
(by testing the solubility of different materials) or melt generation			
solubility of different materials) or melt generation			
different materials) or melt generation			
or melt generation			
I (by examining how I			
	(by examining how		
water lowers the	water lowers the		

melting		
temperature of		
most solids).		
HS-ESS2-7 –		
SWBAT construct		
an argument		
based on evidence		
about the		
coevolution of		
Earth's systems		
and life on Earth.		
Emphasis is on		
the dynamic		
causes, effects,		
and feedbacks		
between the		
biosphere		
and Earth's other		
systems, whereby		
geoscience factors		
control the		
evolution of life,		
which in turn		
continuously alters		
Earth's surface.		
Examples could		
include how		
photosynthetic life		
altered the		
atmosphere		
through the		
production		

Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/
	of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms. SWBAT define and differentiate between physical weathering and chemical weathering.				

					Days)
1.2g - Earth has continuously been recycling water since the outgassing of water early in its history. This constant recirculation of water at and near Earth's surface is described by the hydrologic (water) cycle.	Students will be able to define permeability and describe the factors affecting its rate within soils. Students will be able to define porosity and describe the factors affecting its rate within soils.	Science and Engineering Practices: Developing and Using Models Engaging in Argument From Evidence Scientific	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks Earth Science	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations. Quizzes - Castle Learning	February UNIT - Groundwater & Soil Characteristics
from the atmosphere to Earth's surface by precipitation. Water returns to the atmosphere by evaporation or transpiration from plants. A portion of the precipitation becomes runoff over the land or infiltrates into the ground to become stored in the soil or groundwater below the water table. Soil capillarity influences these processes. The amount of precipitation that seeps into the	rate within soils. Students will be able to define capillarity and describe the factors affecting its rate within soils. Students will be able to describe how wells draw water from the ground. Students will be able to describe an artesian well formation.	Knowledge Is Based Upon Empirical Evidence Crosscutting Concepts: Energy and Matter Structure and Function Stability and Change Interdependence of Science, Engineering, and Technology	ReferenceTables Mill's Notes Packet Lab Manual developed by Michael Breed www.problem-attic.co m www.newsela.com www.castlelearning.c om www.ck12.org www.edpuzzle.com	and problem-attic.com Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts and worksheets, readings from selected works, and review book Test Review Packets created with Castle Learning and/or Problem-Attic website Cumulative Summative Assessment – NYS Earth Science Regents	

ground or runs off is influenced by climate, slope of the land, soil, rock type, vegetation, land use, and degree of saturation. Porosity, permeability, and water retention affect runoff and infiltration. 2.1s - Weathering is the physical and chemical breakdown of rocks at or near Earth's surface. Soils are the result of weathering and biological activity over long periods of time.		ELA: 11-12.RST.1 11-12.RST.2 9-12.WHST.1 9-12.WHST.5 11-12.SL.5 Math: MP.2 MP.4 AI-N.Q.1 AI-N.Q.3	Various videos from iTunes, Netflix, PBS, etc. www.newyorksciencet eacher.com SUNY Oneonta Earth Science Listserv Document Camera and projector Promethean Board All necessary lab equipment to complete labs for this unit.	Examination in June	
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
2.1u - Wave Action: Erosion and deposition cause changes in shoreline features, including	Beach erosion/deposition al patterns Ocean currents as outlined on the Earth Science Reference Tables	Science and Engineering Practices: Developing and Using Models Engaging in	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS	February UNIT - Coastal Processes/ Oceanography

	T			
beaches,		Argument From	School-issued	Earth Science
sandbars, and	Tides and coastal	Evidence	Chromebooks	Regents examinations.
barrier islands.	changes			
Wave action		Scientific	Earth Science	Quizzes - Castle Learning
	Shoreline	Knowledge Is Based	ReferenceTables	and problem-attic.com
rounds	management and	Upon Empirical	1 (0.0.0.0.00 (0.00	and problem dations
sediments as a	environmental	Evidence	Mill's Notes Packet	Homework assignments
result of	impacts	LVIGOTIOC	Willia Hotes Lacket	from textbook, CK12.org,
abrasion. Waves		Crosscutting	Lab Manual	Castle Learning, Edpuzzle,
approaching a		Concepts:	developed by	Newsela.com,
shoreline move		Concepts.	Michael Breed	teacher-created handouts
sand parallel to		Energy and Matter	Wichael Breed	and worksheets, readings
the shore within		Energy and Matter	www.problem-attic.co	from selected works, and
the zone of		Structure and		review book
breaking waves.		Function	<u>m</u>	Teview book
broaking waves.		Function	www.newsela.com	Test Review Packets
Wind: Erosion of		Ctability and	www.riewseia.com	created with
sediments by wind		Stability and		
is most common in		Change	www.castlelearning.c	Castle Learning and/or Problem-Attic website
arid climates and		latandan an dan as af	<u>om</u>	Problem-Allic website
along shorelines.		Interdependence of		1 -1
Wind-generated		Science,	www.ck12.org	Labs -
features include		Engineering, and		Stream Divides & River
dunes and		Technology	www.edpuzzle.com	Systems
sand-blasted		 -	Mania ca cida a a for	Ossar Watsus Frank
bedrock.		ELA:	Various videos from	Ocean Water vs. Fresh
DEGITOCK.		11-12.RST.1	iTunes, Netflix, PBS,	Water
		11-12.RST.2	etc.	
		9-12.WHST.1	, , ,	Cumulative Summative
		9-12.WHST.5	www.newyorksciencet	Assessment – NYS Earth
		11-12.SL.5	<u>eacher.com</u>	Science Regents
				Examination in June
		Math:	SUNY Oneonta Earth	
		MP.2	Science Listserv	

		MP.4 AI-N.Q.1 AI-N.Q.3	Document Camera and projector Promethean Board All necessary lab equipment to complete labs for this unit.		
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
Atmospheric moisture, temperature and pressure distributions; jet streams, wind; air masses and frontal boundaries; and the movement of cyclonic systems and associated tornadoes, thunderstorms, and hurricanes occur in observable patterns. Loss of property, personal injury, and loss of life can be	Students will be able to describe the factors contributing to and the effects of periods of global warming and cooling. Students will observe and analyze the effect humans are having on Earth's climate. Students will be able to work in groups to create a poster presentation.	Science & Engineering Practices: Developing and Using Models Analyzing and Interpreting Data Obtaining, Evaluating, and Communicating Information Science Investigations Use A	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit our curriculum School-issued Chromebooks Earth Science ReferenceTables Mill's Notes Packet Lab Manual	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken from previous administrations of NYS Earth Science Regents examinations. Quizzes - Castle Learning and problem-attic.com Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle,	March UNIT - Meteorology

reduced by effective Students will be able Variety of Methods developed by Newsela.com, emergency to describe the effect Michael Breed teacher-created handouts preparedness. that the angle of Scientific and worksheets, readings insolation has on 1.2d Knowledge Is Based www.problem-attic.co from selected works, and how warm or cold Asteroids, comets, **Upon Empirical** review book the climate is. and meteors are Evidence components of our **Test Review Packets** Students will be able www.newsela.com solar system. to describe and Engaging in created with name the Argument from www.castlelearning.c Castle Learning and/or Impact instruments used to events have Evidence Problem-Attic website om measure been temperature, air correlated Crosscutting www.ck12.org Labs pressure, wind with mass **Relationships:** Absorption & Radiation of direction, wind extinction www.edpuzzle.com Energy speed, and relative and global humidity/dew point. Patterns climatic Various videos from Isolines change. Students will be able Cause & Effect iTunes. Netflix. PBS. Impact to use "Selected craters can Shipwrecks of Lake etc. Properties of Earth's be identified Stability & Change Ontario Atmosphere" chart in Earth's www.newyorksciencet on page 14 in the crust. Systems & Systems Weather Patterns eacher.com Earth Science Reference Tables to Models 2.10 describe the various SUNY Oneonta Earth Reading Isobars Plate motions have layers of Earth's Influence of Science Listsery resulted in global atmosphere. Engineering, Air Pressure and Wind changes in **Document Camera** Technology, and Speeds geography, climate, Students will be able and projector and the patterns of Science on Society to explain why the organic evolution. and the Natural **Hurricane Tracking** layers of the 2.1i atmosphere develop. Promethean Board World based on the Seasonal changes **Determining Cloud Base** concept of density. can be explained Science Is A Human All necessary lab

equipment to

complete labs for this

NY Metar Lab

Endeavor

Students will be able

to observe trends

using concepts of

density and heat

energy. These

currents, prevailing winds, vegetative cover, elevation, and	absorbed/reflected by Earth.		
mountain ranges.	Students will be able to state how a		
Earth's changing position with regard to the Sun and the	surface's properties affect its ability to absorb/radiate heat.		
moon has noticeable effects.	Students will know that heat is also		
Earth revolves	infrared light.		
around the Sun with its rotational axis tilted at 23.5 degrees	Students will be able to state that		
to a line perpendicular to the	dark-colored rough surfaces absorb and		
plane of its orbit, with the North Pole	re-radiate heat better than smooth,		
aligned with Polaris.	reflective ones.		
During Earth's	Students will be able to collect		
one-year period of revolution, the tilt of	temperature data, put it into graph		
its axis results in changes in the angle	form, and interpret those data as it		
of incidence of the Sun's rays at a given	applies to thermodynamics.		
latitude; these	Students will be able		
changes cause variation in the	to define relative and absolute humidity		
heating of the surface. This produces seasonal	and factors affecting their levels.		
variation in weather.	Students will be able to use a sling psychrometer to		

Students use the concepts of density and heat energy to explain observations of weather patterns, seasonal changes, and the movements of the Earth's plates 2.1c Weather patterns become evident when weather variables are observed, measured, and recorded. These variables include air temperature, air pressure, moisture (relative humidity and dewpoint), precipitation (rain, snow, hail, sleet, etc.), wind speed and direction, and cloud cover. 2.1d Weather variables are measured using instruments such as thermometers, barometers, psychrometers, precipitation gauges	measure dew point and humidity using page 12 in the Earth Science Reference Tables. Students will be able to define dewpoint and describe how it is a truer measure of atmospheric moisture content. Students will be able to describe that water condenses to form clouds/fog when air rises, expands, cools, and condenses. Students will be able to identify basic cloud types and describe the weather conditions associated with them. Students will be able to state the relationship between air pressure and wind speed in a		
precipitation gauges, anemometers, and wind vanes. 2.1e Weather variables	wind speed in a tropical storm system. Students will be able		

are interrelated.	to interpret data and		
temperature and	plot it on a dual y-axis plot.		
humidity affect air			
pressure and	Students will be able		
probability of	to accurately plot		
precipitation	latitude and		
	longitude		
air pressure gradient	coordinates.		
controls wind velocity	Students will be able		
	to define relative		
2.1g	humidity and state		
Weather variables	how it changes as		
can be represented	temperature		
in a variety of	changes.		
formats including	_		
radar and satellite	Students will be able		
images, weather	to use page 12 on		
maps (including	the Earth Science		
station models,	Reference Tables		
isobars, and fronts), atmospheric	and a sling		
cross-sections, and	psychrometer to		
computer models.	measure relative		
'	humidity.		
2.1i	Students will be able		
Seasonal changes	to state that as air		
can be explained using concepts of	masses rise, they		
density and heat	expand, cool, and		
energy. These	condense.		
changes include the			
shifting of global	Students will be able		
temperature zones,	to state that		
the shifting of	atmospheric		
planetary wind and	condensation must		
ocean current	occur on		
patterns, the	condensation nuclei.		

occurrence of monsoons, hurricanes, flooding, and severe weather. 2.2 Students explain how incoming solar radiations, ocean currents, and land masses affect weather and climate Many of the phenomena that we observe on Earth involve interactions among components of air, water, and land.	Students will be able to define air pressure and state what causes it. Students will be able to measure air pressure with a barometer and perform conversions between mm Hg and inches using the scale on page 13 of the Earth Science Reference Tables Students will be able to state the relationship between relative humidity and		
2.1f Air temperature, dewpoint, cloud formation, and precipitation are affected by the expansion and contraction of air due to vertical atmospheric movement. 2.1h Atmospheric moisture, temperature and pressure distributions; jet	temperature. Students will understand that as air temperature and dewpoint get closer together, relative humidity increases. Students will be able to state the effects of changing altitude, temperature, and moisture content on air pressure. Students will be able to define isobar and		

streams, wind; air	correctly draw		
masses and frontal	isobars on a		
boundaries; and the	pressure field map.		
movement of			
cyclonic systems and	Students will be able		
associated	to correctly draw		
tornadoes,	isobars on an air		
thunderstorms, and	pressure field map.		
hurricanes occur in			
observable patterns.	Students will be able		
Loss of property,	to locate high and		
personal injury, and	low pressure centers		
loss of life can be	on an isobar map.		
reduced by effective	Chudanta will be abla		
emergency	Students will be able		
preparedness.	to identify areas of		
1.2g	high and low wind		
Earth has	speeds on an isobar		
continuously been	map.		
recycling water since	Students will be able		
the outgassing of	to correctly calculate		
water early in its	pressure gradients		
history. This constant	using an isobar map.		
recirculation of water	doing an loobal map.		
at and near Earth's	Students will be able		
surface is described	to predict the		
by the hydrologic	direction of travel of		
(water) cycle.	storm/pressure		
(Water) by ore.	systems on a map.		
Water is returned			
from the atmosphere	Students will be able		
to Earth's surface by	to correctly use the		
precipitation. Water	Global Wind and		
returns to the	Moisture Belts chart		
atmosphere by	in their Earth		
evaporation or	Science Reference		
transpiration from	Tables.		
	I	l	I

plants. A portion of the precipitation becomes runoff over the land or infiltrates into the ground to become stored in the soil or groundwater below the water table. Soil capillarity influences these processes.

The amount of precipitation that seeps into the ground or runs off is influenced by climate, slope of the land, soil, rock type, vegetation, land use, and degree of saturation.

Porosity, permeability, and water retention affect runoff and infiltration.

1.2e

Earth's early atmosphere formed as a result of the outgassing of water vapor, carbon dioxide, nitrogen, and lesser amounts of other gases from Students will be able to correctly read station models on a synoptic weather map.

Students will be able to describe the temperature and moisture characteristics of an air mass by looking at its name.

Students will be able to use page 13 in their Earth Science Reference Tables to identify and correctly write the symbols of air masses.

Students will be able to predict the source region of an air mass on a map of North America.

Students will be able to identify cold, warm, stationary, and occluded fronts on a synoptic weather map.

Students will be able to describe the structures of cold

2.1b The transfer of heat energy within the atmosphere, the hydrosphere, and Earth's interior results in the formation of regions of different densities. These density differences result in motion. 2.2a Insolation (solar radiation) heats Earth's surface and atmosphere unequally due to variations in: the intensity caused by differences in atmospheric transparency and angle of incidence which vary with time	and warm fronts, along with their associated weather. Students will be able to read/decode the information presented on a station model. Students will be able to use the key on p.13 of the Earth Science Reference Tables to interpret station model data. Students will be able to correctly draw a station model, given a set of meteorological data. Students will be able to calculate past pressure from interpreting the data on a station model diagram.		

duration, which varies with seasons and latitude. 2.2b The transfer of heat energy within the atmosphere, the hydrosphere, and Earth's surface occurs as the result of radiation, convection, and conduction. Heating of Earth's surface and atmosphere by the Sun drives convection within the atmosphere and oceans, producing winds and ocean currents.					
Standards	Content	Skills/Practices	Materials/	Assessments (All)	Timeline
			Resources	Daily/Weekly/ Benchmarks	(Months/Weeks/ Days)
1.1f Earth's changing position with regard to the Sun and the moon has noticeable effects.	Students will be able to define and describe the celestial hemisphere. Students will be able to use altitude and	Science and Engineering Practices: Developing and Using Models	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by Michael Breed to suit	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist solely of questions taken	April through early May UNIT - Astronomy & Earth's Motions

Earth revolves around the Sun with its rotational axis tilted at 23.5 degrees to a line perpendicular to the plane of its orbit, with the North Pole aligned with Polaris.

During Earth's one-year period of revolution, the tilt of its axis results in changes in the angle of incidence of the Sun's rays at a given latitude; these changes cause variation in the heating of the surface. This produces seasonal variation in weather.

1.1b

Nine planets move around the Sun in nearly circular orbits.

The orbit of each planet is an ellipse with the Sun located at one of the foci.

Earth is orbited by one moon and many

azimuth coordinates to locate objects in the sky.

Students will be able to define the term gravity and how it affects objects and orbital paths.

Students will be able to describe how inertia affects the paths of orbiting objects.

Students will be able to describe and identify the changing paths of the Sun across the sky at various times of the year.

Students will be able to describe how the path of the Sun changes at different latitudes, such as the Equator and the poles.

Students will be able to identify the star, Polaris, and explain why stars appear to circumnavigate it. Using Mathematics and Computational Thinking

Constructing
Explanations and
Designing Solutions

Obtaining, Evaluating, and Communicating Information

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

Crosscutting Concepts:

Patterns

Scale, Proportion, and Quantity

Energy and Matter

Interdependence of Science, Engineering, and

our curriculum

School-issued Chromebooks

Earth Science ReferenceTables

Mill's Notes Packet

Lab Manual developed by Michael Breed

www.problem-attic.co

www.newsela.com

www.castlelearning.c

www.ck12.org

www.edpuzzle.com

Various videos from iTunes, Netflix, PBS, etc.

www.newyorksciencet eacher.com

from previous administrations of NYS Earth Science Regents examinations.

Quizzes - Castle Learning and problem-attic.com

Homework assignments from textbook, CK12.org, Castle Learning, Edpuzzle, Newsela.com, teacher-created handouts and worksheets, readings from selected works, and review book

Test Review Packets created with Castle Learning and/or Problem-Attic website

Labs -Sunspot Analysis

Dimension of the Solar System

Apparent Diurnal Motion of the Sun

Duration of Insolation The Ellipse in Space

artificial satellites. Students will be able Technology SUNY Oneonta Earth to describe the Science Listserv Properties of Stars (H-R 1.1a apparent rising and Scientific Diagram) setting of the Moon. Most objects in the **Document Camera** Knowledge solar system are in Assumes an Order and projector Phases of the Moon Students will be able regular and and Consistency in to explain the predictable motion. **Natural Systems** Promethean Board difference between rotation and **Cumulative Summative** These motions revolution. **Assessment** – NYS Earth explain such All necessary lab ELA: phenomena as the 11-12.RST.1 equipment to Science Regents Students will be day, the year, 9-10.WHST.2 complete labs for this Examination in June able to recognize seasons, phases of 11-12.WHST.2 unit. that constellations the moon, eclipses, 11-12.SL.4 change throughout and tides. the year due to Earth revolving around the Math: Gravity influences Sun. MP.2 the motions of MP.4 celestial objects. The Students will be able AI-N.Q.1 force of gravity to list the between two objects AI-N.Q.3 components of the in the universe AI-SSE.1 solar system. depends on their AI-CED.2 masses and the Students will be able AI-CED.4 distance between to look up data about them. the solar system using the Solar System Data Table on page 15 in their 1.1 Earth Science Students explain Reference Tables. complex phenomena, such as Students will be able tides, variations in to recognize that the day length, solar orbits of objects are insolation, apparent actually elliptical and motion of the not circular in shape. planets, and annual

traverse of the constellations 1.1a Most objects in the solar system are in regular and predictable motion.	Students will be able to calculate eccentricity, using the formula on page 1 of the Earth Science Reference Tables		
These motions explain such phenomena as the day, the year, seasons, phases of the moon, eclipses, and tides.	Students will be able to identify the part of an orbit where the orbiting object travels fastest and/or slowest. Students will be able		
Gravity influences the motions of celestial objects. The force of gravity between two objects in the universe depends on their masses and the	to recognize that planets closer to the sun have shorter periods of revolution and greater revolutionary rates than planets farther from the Sun.		
distance between them. 1.1b Nine planets move	Students will be able to state that Earth moves 1 degree/ day in its orbit around the Sun.		
around the Sun in nearly circular orbits. The orbit of each planet is an ellipse	Students will be able to state relative orbital speeds of planets, based upon their distance from		

Earth is orbited by	Students will be able			
one moon and many	to use planetary data			
artificial satellites.	to convert scale			
	distances between			
1.1c	planets of the solar			
Earth's coordinate	system.			
	System.			
system of latitude	Students will be able			
and longitude, with	to construct a scale			
the equator and	model of the solar			
prime meridian as	system on adding			
reference lines, is	machine tape.			
based upon Earth's	masimis taps.			
rotation and our	Students will be able			
observation of the	to draw an ellipse			
Sun and stars.	using the			
1.1d	appropriate tools			
Earth rotates on an				
imaginary axis at a	Students will be able			
rate of 15 degrees	to measure the focal			
per hour. To people	distance and major			
on Earth, this turning	axis of an ellipse and			
of the planet makes	calculate its			
it seem as though	eccentricity			
the Sun, the moon,				
and the stars are	Students will be able			
moving around Earth	to compare ellipse			
once a day. Rotation	eccentricities to			
provides a basis for	those of the planets			
our system of local	of the solar system			
time; meridians of				
longitude are the	Students will be able	1		
basis for time zones.	to predict where an	1		
1.1e	object travels fastest			
The Foucault	in its orbit around the			
pendulum and the	Sun.			
Coriolis effect	Studente will be oble	[
provide evidence of	Students will be able	[
provide evidence of	to describe why			

Earth's rotation. 1.1f Earth's changing position with regard to the Sun and the moon has noticeable effects. Earth revolves around the Sun with its rotational axis tilted at 23.5 degrees to a line perpendicular to the plane of its orbit, with the North Pole aligned with Polaris. During Earth's one-year period of revolution, the tilt of its axis results in changes in the angle of incidence of the Sun's rays at a given latitude; these changes cause variation in the heating of the	constellations in the nighttime sky change throughout the year. Students will be able to state the calendar dates of the spring and fall equinoxes and the summer and winter solstices. Students will be able to state the latitude of the noon sun being directly overhead on each of the calendar dates listed above. Students will be able to recognize these calendar dates on a diagram of Earth in its orbit around the Sun. Students will be able to explain how the length of daylight /		
aligned with Polaris.	overhead on each of the calendar dates		
one-year period of revolution, the tilt of its axis results in changes in the angle of incidence of the Sun's rays at a given	to recognize these calendar dates on a diagram of Earth in its orbit around the		
changes cause	to explain how the		
1.1g Seasonal changes in the apparent positions of	Students will be able to draw and label Earth in its orbit		

theory is that the	Students will be able		
universe was created	to explain why the		
from an explosion	same side of the		
called the Big Bang.	Moon always faces		
Evidence for this	Earth. (rate of		
theory includes:	rotation is equal to		
	the rate of		
cosmic background radiation	revolution)		
	Students will be able		
a red-shift (the	to recognize the		
Doppler effect) in the	eight primary phases		
light from very	of the Moon and be		
distant galaxies.	able to draw the		
garana g	Moon's appearance		
1.2b	as viewed from		
Stars form when	Earth in each of the		
gravity causes	corresponding eight		
clouds of molecules	positions in its orbit.		
to contract until	0, 1, , , , , , , , , , , ,		
nuclear fusion of light	Students will be able		
elements into	to describe the		
heavier ones occurs.	differences between		
Fusion releases	total solar, annular		
great amounts of	solar, and lunar		
energy over millions	eclipses.		
of years.	Students will be able		
-	to recognize the		
The stars differ from	positioning of the		
each other in size,	Sun, Earth, and		
temperature, and	Moon in creating		
age.	solar and lunar		
	eclipses.		
Our Sun is a			
medium-sized star	Students will be		
within a spiral galaxy	table to define the		
of stars known as the			

Milky Way. Our galaxy contains billions of stars, and the universe contains billions of such galaxies.

1.2c

Our solar system formed about five billion years ago from a giant cloud of gas and debris. Gravity caused Earth and the other planets to become layered according to density differences in their materials.

The characteristics of the planets of the solar system are affected by each planet's location in relationship to the Sun.

The terrestrial planets are small, rocky, and dense. The Jovian planets are large, gaseous, and of low density.

1.2d

Asteroids, comets,

term *light year*.

Students will be able to describe the time frame it takes for sunlight to reach the various planets of the solar system.

Students will be able to describe what a galaxy is and where the solar system is located in the Milky Way galaxy.

Students will be able to describe the similarities and differences between the heliocentric and geocentric models of the universe.

Students will be able to use the Electromagnetic Spectrum Chart on page 14 of the Earth Science Reference Tables to compare the wavelengths and frequencies of cosmic rays, x-rays, ultraviolet, visible, infrared, television, microwave, and radio forms of

and meteors are components of our solar system.

Impact events have been correlated with mass extinction and global climatic change.

Impact craters can be identified in Earth's crust.

2.1i

Seasonal changes can be explained using concepts of density and heat energy. These changes include the shifting of global temperature zones, the shifting of planetary wind and ocean current patterns, the occurrence of monsoons, hurricanes, flooding, and severe weather.

2.2a

Insolation (solar radiation) heats
Earth's surface and atmosphere unequally due to

electromagnetic radiation.

Students will be able to explain how bright line and/or dark line spectra can be used to identify the elements present in a star or glowing nebula in space.

Students will investigate the relationships between the temperatures, brightnesses, and diameters of stars.

Students will be able to recognize red-shifted spectra as objects moving away from Earth.

Students will be able to describe evidence supporting the cosmic background radiation.

Students will be able to state the current estimate for the age of the Universe - 13.567 billion years.

Students will

variations in: the intensity caused by differences in atmospheric transparency and angle of incidence which vary with time of day, latitude, and season characteristics of the materials absorbing the energy such as color, texture, transparency, state of matter, and specific heat duration, which varies with seasons and latitude.	observe the bright line spectra of hydrogen, helium, oxygen, air, argon, krypton, and neon.				
Standards	Content	Skills/Practices	Materials/ Resources	Assessments (All) Daily/Weekly/ Benchmarks	Timeline (Months/Weeks/ Days)
1.2j Geologic history can be reconstructed by observing sequences of rock types and fossils to correlate	Students will be able to identify meteorites as the causes of impact craters. Students will be able	Science and Engineering Practices: Developing and	CK12 Organization Digital Textbook - Secondary Earth Science, as customized by	Tests - all tests throughout the year are written using Castle Learning or problem-attic software, and consist	Last half of May UNIT - Earth's History

bedrock at various locations.	to describe the global and local	Using Models	Michael Breed to suit our curriculum	solely of questions taken from previous	
The characteristics	consequences of	Constructing		administrations of NYS	
of rocks indicate the	meteorite impacts of	Explanations and	School-issued	Earth Science	
processes by which	varying sizes.	Designing Solutions	Chromebooks	Regents examinations.	
they formed and the	Students will be able				
environments in	to define what a	Engaging in	Earth Science	Quizzes - Castle Learning	
which these	fossil is and some of	Argument From	ReferenceTables	and problem-attic.com	
processes took	the characteristics of	Evidence	INCIDITE INDICS	and problem-attic.com	
place.	organisms that	Evidence	MATERIAL CONTROL OF	l.,	
piaco.	promote	l	Mill's Notes Packet	Homework assignments	
Fossils preserved in	preservation as a	Science Models,		from textbook, CK12.org,	
rocks provide	fossil.	Laws, Mechanisms,	Lab Manual	Castle Learning, Edpuzzle,	
information about		and Theories	developed by	Newsela.com,	
past environmental	Students will be able	Explain Natural	Michael Breed	teacher-created handouts	
conditions.	to describe how	Phenomena		and worksheets, readings	
COTTONIO I	fossils form in a		www.problem-attic.co	from selected works, and	
Geologists have	depositional	Crosscutting	m	review book	
divided Earth history	environment.	Concepts:		Total Soon	
into time units based	Ctudente will be able	concepts .	www.newsela.com	Test Review Packets	
upon the fossil	Students will be able to list various types	 Patterns	www.newsela.com	created with	
record.	of fossils: casts,	Falleriis			
	molds, imprints,		www.castlelearning.c	Castle Learning and/or	
Age relationships	amber, ice, tar,	Stability & Change	<u>om</u>	Problem-Attic website	
among bodies of	petrification, and				
rocks can be	carbonaceous films.	<u>ELA</u> :	www.ck12.org	Labs -	
determined using	Carbonacocae mino.			Half-life of M&M'ium	
principles of original	Students will be able	11-12.RST.1	www.edpuzzle.com		
horizontality,	to describe	11-12.RST.8		Bedrock Correlation of	
superposition,	information provided	9-12.WHST.1	Various videos from	Cayuga Lake	
inclusions,	by fossils: species	9-10.WHST.2	iTunes, Netflix, PBS,		
cross-cutting	change over time,	11-12.WHST.2	etc.	Sequence of Events	
relationships, contact	biodiversity in the	11-12.SL.5	0.0.		
metamorphism, and	past, changes in		www.newyorksciencet	Important geologic events	
unconformities. The	Earth's surface,	Math	eacher.com	in NYS	
presence of volcanic	Earth's past climate,	Math:	Eacher.com		

				_	
ash layers, index fossils, and meteoritic debris can provide additional information. The regular rate of nuclear decay (half-life time period) of radioactive isotopes allows geologists to determine the absolute age of materials found in some rocks. 1.2i The pattern of evolution of life-forms on Earth is at least partially preserved in the rock record. Fossil evidence indicates that a wide variety of life-forms has existed in the past and that most of these forms have become extinct. Human existence has been very brief compared to the expanse of geologic	and appearances/activiti es of extinct species. Students will be able to use the concepts of relative dating, the Principle of Superposition, the Law of Crosscutting Relationships, index fossils, and unconformities in order to be able to list the sequence of formation of rock layers in an outcrop in chronological fashion. Students will be able to define the term stratigraphic column. Students will be able to reconstruct a stratigraphic column by correlating rock layers from 12 different rock outcrops from the same area. Students will learn some of the geologic background of central New York	MP.2 MP.4 AI-N.Q.1 AI-N.Q.3 AI-F.IF.5	SUNY Oneonta Earth Science Listserv Document Camera and projector Promethean Board All necessary lab equipment to complete labs for this unit.	Cumulative Summative Assessment – NYS Earth Science Regents Examination in June	

time.	State.		
1.2f Earth's oceans formed as a result of precipitation over millions of years. The presence of an early ocean is indicated by sedimentary rocks of marine origin, dating back about four billion years.	Students will be able to describe the process of radioactive decay. Students will be able to define half life, parent atom, and daughter atom. Students will be able to calculate the age of an object, given the relative abundances of parent and daughter atoms and the half life of the radioisotope measured. Students will be able to state that carbon-14 is the radioisotope used for organic remains less than 50,000 years old. Students will be able to read the "Half-Lives of Selected Radioisotopes" and the "Geologic History of New York State"		

_			
charts in the E Science Refer Tables			
Students will to model the hof a radioisoto	alf life		
Students will to graphically the data collect during today's activity.	olot ted		
Students will to predict the reliability of landata sets.			
Students will be to use pages to use pages to on the Earth State of th	3 & 9 cience		
Students will to differentiate between eras, periods, and e	eons,		
Students will be to recognize to the humans have occupied Eart tiny percentage history.	nat n for a		
Students will b	e able		

formed 4.5 billion years ago.
